

 International Journal of Artificial Intelligence and Soft Computing (IJAISC)Vol.4, No.1,October 2018.

Comparison of Class Inheritance and
Interface Usage in Object Oriented

Programming through Complexity Measures

V. Krishnapriya
1
 and Dr. K. Ramar

2

1 Head, Dept of Computer Science, Sri Ramakrishna College of Arts & Science

for Women, Coimbatore, Tamilnadu. .

2 Principal, Sri Vidya College of Engineering and Technology, Virudhunagar,

Tamilnadu.

ABSTRACT

It is widely acknowledged that in software engineering, the usage of metrics at the initial phases of the
object oriented software can help designers to make better decisions. The quality of class diagrams could
be a major determinant for the quality of the software product that is finally delivered. Quantitative
measurements are useful to assess class diagram quality. Following this innovative thinking, two UML
class diagrams are taken to measure the complexity and size. A set of metrics of complexity measures are
used to measure the class diagrams. Seven known complexity measures are evaluated and compared for
inheritance and interface usage in object oriented programming. Two UML class diagrams are introduced
with possible interfaces and measured the complexity metrics and a comparison has been made between
the class inheritance and class interface usage through complexity measurements.

KEYWORDS

Class diagrams, Interface diagrams, Object oriented metrics, UML, Complexity.

1. INTRODUCTION

Software engineering metrics are important measurements for project planning and

project measurements. The increasing importance of software measurement and metrics led to
the development of new software measures and metrics. Many metrics have been proposed for
traditional programming and object oriented programming.

“Software quality is the degree to which software possesses a desired combination of
attributes such as maintainability, testability, reusability, complexity, reliability,
interoperability etc” – IEEE 1992.

The increased demand for the software quality has resulted in higher quality software
and nowadays quality is the main differentiator between the software products. Due to this
reason the software designers and developers need valid measures for the evaluation,
improvement and validation of product quality from initial stages. The early focus on class
diagrams quality helps the software engineers and developers to build better software without
doing unnecessary revisions at later stages of development. Revisions or changes at later
stages will lead to increase in expenditure and be more complex to perform. Nowadays
software measurement plays an important role for measuring quality and complexity of
software. The early availability of software metrics for UML diagrams were used for quality
and complexity evaluation. [8][10][11]

 International Journal of Artificial Intelligence and Soft Computing (IJAISC)Vol.4, No.1,October 2018.

1.1. Measurement and Metrics

Nowadays, software engineering plays a most important technology in the world. As
computer software has grown, the software developers have continually attempted to develop
new technologies. In these newly developed technologies some of them focused on object
oriented technologies [13]. In this paper object oriented class inheritances are differentiated
with object oriented interface class diagrams through complexity measures.

“If you cannot measure it’s not Engineering Community” is often said by the
engineering community. [6]

The key factor for any engineering discipline is measurement. Without measurement or
metrics it is impossible to measure quality and complexity to detect problems before it is
released. So measurement is very important in managing the software projects. [2][12][14][15]

Metrics are used as a powerful tool in software research, maintenance and
development for estimating cost, effort, complexity, quality, maintenance and to
control etc[5]. Metrics serves as an early warning tool for potential problems
happening in software development [14]. Any metrics must be defined as a complete
and well designed quality improvement paradigm (QIP) [4].

2. BACKGROUND

The concept of an interface in object oriented programming is quite old. Software
engineering has been using interfaces for more than 25 years. Software measurement
activities were not addressed to most of their requirements for providing information
and to support for managerial decision making [12]. Many metrics are available to
measure class, method, inheritance, polymorphism and system level. There is no
significant work on the design of human computer interfaces. In literature, relatively
little information has been published on interface metrics. Those metrics provide only
little information about the quality and usability of the interfaces.

Finding difference in classes makes it more effective for object oriented
programming. The difference in using an inheritance and interfaces in class diagrams
are measured. These measures are done by using structural complexity metrics.

2.1 RELATED WORK

The concept of interfaces has been measured in java programming by Fried
Stiemann and Co [7]. He represented that the usage of interfaces compared to classes
are 4:1.

Ken Pugh [10] stated that finding commonality among classes makes it more
effective for object oriented programming and he also explored the commonality in
using inheritance and using interfaces in object oriented programming.

The novel idea in this paper is finding the difference in using class inheritance
and interface through structural complexity metric measures.

Measuring complexity of software products was and still is a widely scattered research
project.

“A lower software structural complexity could lead to a greater software reliability” –
Fenton and Pfleeger, 1997.

The structural complexity measure is the most important measurement to evaluate the
quality of UML class diagrams. [3]

It is well known that software structural complexity metrics are very useful to evaluate the
different characteristics that affect the quality of object oriented software. In literature there are
several measures of complexity. With the above said idea in mind a set of seven different

29

 International Journal of Artificial Intelligence and Soft Computing (IJAISC)Vol.4, No.1,October 2018.

metrics are taken to measure the structural complexity of object oriented UML diagrams to find the
difference in using class inheritance and interface concepts in object oriented programming.

2.2 METRICS USED

No single metric is available to measure the complexity of software [7]. The metrics
discussed below are used to measure the complexity of UML diagrams [9].

2.2.1 Number of Aggregation - NAgg

The number of aggregation metric is defined as the total number of aggregation
relationships within the class diagram.

2.2.2 Number of Dependencies – NDep

It is defined as total number of dependency relationships with in the class diagram.
Dependency is a weaker form of relationship which indicates that one class depends on
another class because it uses it at some point of time [10][11].

2.2.3 Number of Generalisations – NGen

The number of generalisation metrics is defined as the total number of generalisation
relationships with in a class diagram. Generalisation is a relationship between two classes [11].

General/super class
Special/subclass

2.2.4 Number of Generalisation Hierarchies – NGenH

The number of generalisation hierarchy metric is defined as the total number of
generalisation hierarchies with in the class diagram. A generalisation hierarchy is a structural
grouping of entities that share common attributes. Each instance of super type entity must
appear in at least one subtype. An instance of the subtype must appear in subtype [11].

2.2.5 Number of Aggregation Hierarchies – NAggH

The number of aggregation hierarchy metric is defined as the total number of aggregation
hierarchies with in a class diagram.

2.2.6 Maximum Depth of Inheritance Tree – MaxDIT

Depth of a class with in the inheritance hierarchy is the maximum number of steps from
the class node to the root of the tree or the length of the longest path from the class to the root
of the hierarchy. This is measured by the number of ancestor classes.

2.2.7 Maximum Hierarchy Aggregation – MaxHAgg

The maximum hierarchy aggregation metric is defined as the maximum between the
hierarchy aggregation value for each class of the class diagram. The hierarchy aggregation
value for a class with in the aggregation hierarchy is the length of the longest path from the
class to the leaves.

3. GOAL AND RESEARCH HYPOTHESES

Two Examples and two hypotheses are used to achieve the goal.
Goal: Exploring the difference in using Class inheritance and interface measures using
complexity measures.
Hypotheses 1: A set of complexity metrics are taken to measure the complexity of two concepts.
Hypothesis 2: length is considered as complexity measure and is measured for both examples.

30

 International Journal of Artificial Intelligence and Soft Computing (IJAISC)Vol.4, No.1,October 2018.

3.1 METHODOLOGY

Software complexity is measured in two ways.
(1). Software complexity is calculated by measuring the above said metrics

i. Two Class inheritance diagrams are taken and are measured using the above said

seven structural complexity measures.
ii. The Two class diagrams are introduced with maximum number of possible

interfaces and the complexity measurement metrics are measured.
iii. The results are compared for class inheritance and class interface diagrams.
iv. Length is defined as the number of lines of code. [1]

(2). Complexity is calculated by using length also.

e (p) = l(p) * c(p) -- I

Where e (p) is the total complexity, l (p) is the length of the software and c (p) is the average
complexity.

4. APPLYING METRICS TO UML DIAGRAMS

Two UML class inheritance diagrams are taken and all the above said metrics are
applied to measure complexity. The two diagrams are introduced with maximum possibility of
interfaces and metrics which are used to measure the complexity. Both inheritance and
interface diagrams complexity measures are compared. First UML class diagram has been
taken as vehicle classification.

Figure 1: Vehicle Classification with Class Inheritance

The above figure 1 vehicle classification diagram is introduced with maximum

possible interfaces and is shown in figure 2.

Figure 2: Vehicle Classification with Interface Diagram

31

 International Journal of Artificial Intelligence and Soft Computing (IJAISC)Vol.4, No.1,October 2018.

The above said measurement metrics are applied for class inheritance and class interface
diagrams. The table 1 shows the measurement values for the above said metrics.

Table1: Complexity Measurement for Vehicle Classification

Diagram/ Leng NAg NDe NGe NGe NAgg Max Max Avg. Total
Metric th g p n nH H DIT HAg Complex complexi

 g ity ty
Vehicle 125 0 2 6 4 0 2 0 2.0 250
Inheritance
Vehicle 93 0 2 4 2 0 1 0 1.29 119.97
Interface

The average complexity is calculated by finding the mean for complexity metrics.

7

6

 Vehicle Inheritance

5

Vehicle Interf ace

4

3

2

1

0

g ep n NGenH N
g

H MaxDIT MaxHAgg
Ag D Ge

N N N Ag

Graph1. Comparison of Metrics for Vehicle Classification

The second diagram referred is types of shapes which are shown in figure 3.

Figure 3: Types of Shapes Using Class Inheritance The above diagram is introduced
with possible number of interfaces and the diagram is shown in figure 4.

32

 International Journal of Artificial Intelligence and Soft Computing (IJAISC)Vol.4, No.1,October 2018.

Figure 4: Types of Shapes with Interfaces

For the above said two figures 3 and 4 the complexity are measured through the above said
seven metrics. The resulted values are tabulated in table 2.

Table 2: Complexity Measurement for Shapes Classification

Diagram/ Length NAg NDep NGen NGen NAgg Max Max Avg. Total

Metric g H H DIT HAg Complex complexit
 g ity y

Shape 108 0 7 9 3 0 3 0 3.14 339.12
Inheritan

ce
Shape 67 0 6 7 2 0 2 0 2.43 162.81

Interface

Total complexity represented in two tables is calculated by using the above said formula I. For
table 1 and 2 graphs have been drawn to show the improvement in using interface concepts.
Graph 2 depicts the difference in improvement in structural metrics for the second example.

Graph 3 shows the difference in concepts using length for two examples.

10
9 Shape Inheritance

8

Shape Interface

7

6

5
4
3
2

1

0

gg NG N MaxDIT a
 nH g

NA NDep
n

AggH

xHA
g

NGe e

 M

Graph 2: Comparison of Metrics for Shapes Hierarchy

33

 International Journal of Artificial Intelligence and Soft Computing (IJAISC)Vol.4, No.1,October 2018.

No. Of Lines

140
120
100
80
60
40
20

0

nce Interface
ce ce

 Inherit Inh fa
 s

 a

t an
r

 eri te
eh Vehicle h S In

pe e es
haicl ap

V S

Graph 3: Inheritance Vs Interface Concepts Using length

The number of lines is measured for the above said two examples. The length is

reduced for the concept of interfaces compared to inheritance concept. Introduction of
interfaces in object oriented programming in possible places is better for producing good
quality and high reliable software.

Total complexity

400

350 Total complexity

300

250

200

150

100

50

0

Vehicle Vehicle Shape Shape
Inheritance Interf ace Inheritance Interface

Graph 4: Inheritance Vs Interface using Total Complexity

5. CONCLUSION

The structural complexity is measured between the usage of class inheritance and
interfaces in object oriented programming. In this paper, a set of seven structural metrics are
used to measure UML class diagram structural complexity with respect to the usage of UML
relationships such as aggregations, associations, dependencies and generalisations. The
average and the total complexity values are reduced for both examples of object oriented
interfaces compared to object oriented class inheritance concepts. Interface concept has shown
better performance compared to inheritance concept in object oriented programming. Software
reliability will increase with lower software complexity.

34

 International Journal of Artificial Intelligence and Soft Computing (IJAISC)Vol.4, No.1,October 2018.

REFERENCES

[1.] Adrain Costea,” On Measuring Software Complexity”, Journal of Applied Quantitative Methods,
vol.2,no.1 , Spring 2007.

[2.] Agarwal K.K.,Yogesh Singh, Arvinder Kaur, Ruchika Malhotra,”Emprical Study of Object-
Oriented Metrics”, Journal of Object Technology, Vol. 5, Nov-Dec 2006.

[3.] Baowen Xu, Dazhou Kang and Jianjiang,”A Structural Complexity Measure for UML Class
Diagrams”, vol.3036, P.No:421-424, May 2004.

[4.] Carlo Ghezzi, Mehdi Jazayeri, Dino Manddrioli,”Fundamentals of software Engineering, P.No: 366,
2

nd
 Edition, Prentice Hall India, 2003.

[5.] El Hachemi Alikacem, Houari A. Sahraoui, “Generic Metric Extraction
Framework”,IWSM/Metrickon, Software Measurement Conference 2006.

[6.] Ivar Jacobson, Magnus Christerson, Patrick Johnson, Gunnar OverGarrd,”Object Oriented Software
Engineering-A Use Case Driven Approach”, P.NO:468, Pearson Education @ 2001.

[7.] Jorge Cardoso,”Control-flow Complexity Measurement of Process and Weyuker’s Properties”,
World Academy of Science Engineering and Technology, Aug 2005.

[8.] Manso M., Genero M. and Piattini M.,”No-Redundant Metrics for UML Class Diagram Structural
Complexity”, Advanced System Engineering, LNCS 2681, P.No: 127-142, Springer 2003.

[9.] Marcela Genero,Mario Piattini “Empirical validation of measures for class diagram structural
complexity through controlled experiments”, Proceedings of the 2002 International Symposium on
Empirical Software Engineering.

[10.] Marcela Genero, Mario Piattini and Coral Calero, ”Empirical Validation of Class Diagram
Metrics”, Proceedings of the 2002 International Symposium on Emprical Software Engineering
(ISESE’02) @ 2002 IEEE.

[11.] Marcela Genero, Mario Piattini and Coral Calero, ”A Survey of Metrics for UML Diagrams”,
Journal of Object Technology, P.No: 55-92, Vol. 4, No. 9, Nov-Dec 2005.

[12.] Norman E. Fenton, Shari Lawrence Pfleeger,”Software Metrics – A Rigorous & Practical
Approach”, 2nd Edition.

[13.] Roger S. Pressman,”Software Engineering a Practitioner’s Approach”, 6

th
 Edition.

[14.] Stephen R. Schach, ”Object Oriented and Classical Engineering”, 5

th
 Edition,Tata McGraw

Hill,2002.

[15.] Watts S. Humphery,”A discipline for Software Engineering, SEI Series in Software Engineering,
P.No:209-210, Pearson Education Asia, 2001.

35

 International Journal of Artificial Intelligence and Soft Computing (IJAISC)Vol.4, No.1,October 2018.

Authors
1. V. Krishnapriya M.C.A., M.Phil.,

She is currently Head, Department of computer Science at Sri Ramakrishna College of
Arts and Science for Women, Coimbatore, Tamilnadu and pursuing her Ph.D Mother
Teresa Women’s University, Kodaikanal. She has 13 years of teaching experience and
presented more than 9 papers in National and International Conferences and produced
3 M.Phils so far.

2. K.Ramar B.E, M.E, Ph.D

Received the Ph.D Degree in Computer Science from Manonmaniam Sundaranar university,
Tirunelveli and prior degrees from PSG College of Technology, Coimbatore and Govt College
of Engineering, Tirunelveli. He is currently Principal, Sri Vidya College of Engineering and
Technology, Virudhunagar, Tamilnadu. He is life member in the CSI-Mumbai, ISTE-
NewDelhi, SSI-Trivandrum and Fellow in Institution of Engineers, Kolkatta. He has published
10 articles in National and International journals and presented papers in more than 40
conferences. He has produced 5 Ph.D and 15 M.Phils so far.

36

