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Abstract: 
 
 Background and objectives:  
 According to the World Health Organisation, cardiovascular illnesses are the leading cause of mortality 
worldwide, killing around 17.9 million people each year. Arrhythmia is a type of cardiac illness 
characterised by a change in the linearity of the heartbeat. The purpose of this research would be to create 
new deep learning approaches for reliably interpreting arrhythmia using a single second segment. Because 
the ECG signal indicates unique electrical heart activity across time, considerable changes between time 
intervals are detected. Such variances, as well as the limited number of learning data available for each 
arrhythmia, make standard learning methods difficult, and so impede its exaggeration. 
 
Conclusions:  
 
 The proposed method was able to outperform several state-of-the-art methods. Also proposed technique is 
an effective and convenient approach to deep learning for heartbeat interpretation, that could be probably 
used in real-time healthcare monitoring systems 
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Introduction:  
 
Deep learning methods are increasingly being applied to electrocardiograms (ECGs), with recent 
studies indicating that neural networks (NNs) may predict future heart failure or atrial fibrillation 
based solely on the ECG. However, a huge number of ECGs are required to train NNs, and many 
ECGs are now only available in paper format, which is incompatible with NN training. We 
developed a completely automated online ECG digitization programme to transform scanned 
paper ECGs into digital signals. [12]. The programme automatically separates the ECG image 
into separate images for each of the 12 leads before applying a dynamical morphological approach 
to extract the signal of interest. The algorithm's performance was then tested using 1715 digitised 
ECGs from MIT BIH and clinical data. After removing ECGs with lead signal overlap, the 
automated digitisation technique achieved 99.0% correlation between the digitised signals and 
the ground truth ECG (n = 1715 standard 3by4 ECGs). We created and tested a fullyautomated, 
userfriendly online ECG digitization tool. Unlike other accessible programmes, this one does not 



 
 

International Journal of Data mining Management Systems (IJDMS) Vol.1, No.3, July 2023. 

 

2 

require human ECG signal segmentation[7]. Our solution can help with the quick and automated 
digitization of massive collections of paper ECGs so that they can be used in deep learning 
projects. 
 
The application of machine learning to electrocardiograms (ECG) is gaining popularity. In 
general, wavelet analysis and local binary patterns were utilised to extract features from ECG, 
and subsequently support vector machine (SVM), k-nearest neighbour (kNN), and cutting-edge 
deep neural networks were investigated for arrhythmia detection. Convolutional neural networks 
(CNN) have also been used to identify incident heart failure by predicting the likelihood of 
Tachycardia and Bradycardia. Machine learning requires vast volumes of ECGs in electronic 
format, however in clinical practise, they are frequently printed on paper and are not available in 
digitised format[1]. Accessing and exploiting massive numbers of paper ECGs that have not been 
preserved electronically can be particularly difficult.Although ECG data sources are becoming 
more widely available, access to ECGs for machine learning applications would be substantially 
enhanced by an automated digitization tool capable of swiftly converting massive amounts of 
older paper-based ECGs into digital signals. 
 

 

 

Figure 1. An explanation of the process used to digitise the automated ECG. 
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There have been several attempts to build 12-lead ECG digitization techniques. ECGscan, for 
example, was the first commercially available such tool, although it requires extensive human 
input to select the parts of the ECG that needed digitization[5]. Similarly, some digitization 
technologies require manual input to verify that the end-user accurately identifies the ECG leads. 
Others have created ECG digitization techniques that operate on segmented single-lead ECG 
images. Other efforts have been made to build automated digitisation techniques that do not 
require user input, but these algorithms can only digitise ECGs with leads printed in a specified 
arrangement.  

Another method includes using a pre-set binary mask to extract the region of interest, albeit this 
method is limited to a single and specific arrangement of ECG data[22]. Furthermore, ECG 
digitization techniques for cardiac illness diagnosis and monitoring have been established. While 
no human intervention is required, no one method is applicable to all paper ECG formats. To 
validate, several current methods avoid directly comparing with the original digital ECG and 
instead use properties of the ECG such the PR, QRS, RR, QT intervals, or heart rate. A completely 
automated, user-friendly, accurate, and generalizable method for digitising paper 
electrocardiograms (ECGs) of varying configurations is lacking in the market. To overcome these 
limitations, we developed a public, hands-off method that can digitise 12-lead ECGs with signals 
produced in any standard configuration. We include this functionality into a user-friendly 
interface, and we anticipate that our tool will allow for the easy digitization of a large number of 
ECGs for machine learning applications. 

Methods 

Figure 1 depicts our algorithm for automated ECG digitization.Algorithms 17 in Supplementary 
material show the pseudocode for ECG digitization.The paper ECG image was initially 
preprocessed to remove any censored parts and grid lines before being turned into a binary image, 
allowing the ECG baselines to be recognised afterwards.After determining the ECG baselines, 
vertical anchor points were employed to determine the upper and lower boundaries of each ECG 
lead signal[2].This phase also helps the algorithm to decide the layout of the ECG leads on the 
printed ECG (i.e., the number of rows).Then, using lead name detection, the horizontal anchor 
points of each lead, i.e. the left- and right- hand limits of the ECG signals to be digitised, were 
utilised to crop and extract the signals in each lead of the 12-lead ECG. Finally, each lead's signals 
were digitised independently[9].  

Source of development data.  

Patients who came to Government Medical, Bhandara were recorded with 12-lead ECGs using 
hospital equipment; the bulk of our data originates from MIT-BIH. These ECGs were first printed 
on paper and then sent to the study team in the form of anonymized, scanned copies in Portable 
Document Format (PDF), which were then converted to 250 dpi Portable Network Graphics 
(PNG) files. Most of these electrocardiograms included three or four electrodes in lead II. There 
was no digital ECG ground truth data in this database; only paper ECGs were included. For the 
sake of developing and testing our digitization method[14] [27], we utilised only ECGs recorded 
at a paper speed of 25 mm/s and calibrated them to 1 mV = 10 mm. 



 
 

International Journal of Data mining Management Systems (IJDMS) Vol.1, No.3, July 2023. 

 

4 

Primary stage : . Pre‑processing. All ECGs in the development database included a header made 
up of black pixels of censored patient information, which may have hampered digitisation of ECG 
traces. As a result, before beginning the digitization process, each ECG's censored area was 
automatically deleted. For each row, the average pixel intensity was zero in the blacked-out 
redacted area, but it was a positive scalar in the to-be-digitized parts of the image. This allowed 
the censored region to be reliably recognised and deleted before the ECG signals were digitised. 
ECGs are often printed on paper with gridlines that have been removed before to the digitization 
process. Given that the ECG contained red pixels, the image's red channel was set to 1 and the 
image was converted to greyscale. A threshold of 0.94 was employed to distinguish pixels from 
gridlines in the ECG signal. Pixels with values more than 0.94 were disregarded, while those with 
values less than 0.94 were considered to be indicative of an ECG signal or lead name. The ECG 
traces and lead name information were recovered from the binary image in this manner, and the 
backdrop and gridlines were removed. The processed binary image is depicted visually in Figures 
2A, B. 

ECG configuration determination and baseline detection. In the initial stage of automated 
digitization, the algorithm was required to identify the signal baseline and the number of rows of 
ECG signals in order to determine the ECG configuration[5]. Baselines in electrocardiograms 
(ECGs) were conceptualised as planes through which ECG signal strengths were maximally 
represented. To convert pictures from Cartesian to polar coordinates, the Hough transform is used. 
It has been put to use in the process of computing-vision feature extraction from digital images[9]. 
We employed the Hough transform to identify the ECG baselines. During the Hough 
transformation, two limitations were put in place to limit the amount of variables and prevent an 
incorrect identification of the baseline. Since the ECG baseline is often assumed to be horizontal, 
we started by only considering the x-axis values between +2.5 and -2.5. Second, any lines that 
were less than 80% of the width of the printed ECG were removed since the baseline is meant to 
span almost the full width of the picture. If the distance between adjacent ECG leads was less 
than 15% of the entire width of the picture, the lines were combined to create a single waveform. 
This guaranteed that adjacent leads' ECG signals remained separate and were not mixed 
throughout the digitization process. This method also assisted in determining the number of 
baselines on the printed ECG and, when combined with the vertical anchor point detection method 
described below, supplied information on lead configuration[14]. 

Next Step : Feature Extraction.   

In the same way that baseline detection was used to generate vertical anchor points to identify 
ECG signals in space, vertical anchor points were utilised to define the upper and lower 
boundaries of the signals in each ECG lead in order to identify the signals to be digitised. The 
vertical cropping length is shown in Fig. 2B. For horizontal anchor point identification, higher 
and lower boundaries of 0.7 times the distance between two adjacent ECG signals (in the 
horizontal plane) above and below the ECG baseline were used. Horizontal anchor points were 
utilised to establish the left- and right-hand boundaries of the ECG signals to be digitised, which 
represented the start and end of the signals, respectively[4]. The start and end of the ECG signal 
to be digitised were the lead name and the start of the succeeding ECG signal in the horizontal 
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plane. For leads on the far right of the picture with no right-hand boundary, the maximum 
horizontal distance encompassing the ECG signal in other leads in the same ECG was utilised to 
establish the right-hand boundary When we were unable to detect lead names when they were 
close to the ECG baseline. ECG baselines were eliminated in these cases so that the digitisation 
tool could identify the lead names. In addition, morphological dilation and erosion were used on 
the image to improve the distinguishability of the lead names from the surrounding signals[19].  
Both dilation and erosion are iterative region-growing techniques that thicken the lines, making 
it easier for automated procedures to recognise things of interest. All items of interest in the image 
were filtered with a width-height ratio greater than 5, as well as those with a width or height of 5 
pixels or greater than 500 pixels. 

 

 Figure 2. Image processing 
 

The next step was to apply a deep learning model32 that had been trained on text character 
recognition to find the names of the main actors from the remaining filtered content. The model 
was fed a binary picture of a 12-channel electrocardiogram (ECG) and a set of ground-truth lead 
names ('I,' 'II,' 'III,' 'avr,' 'avl,' 'avf,' 'v1', 'v2', 'v3', 'v4', 'v5', 'v6') [11]. The result included any texts 
detected by the model, the text's related bounding box, and the confidence score. To discover lead 
names, confidence score thresholds were chosen so that the identification of one of the text strings 
resulted in a confidence score greater than the threshold. In this manner, lead name objects, as 
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well as their location, height, and breadth information, were identified for use as horizontal anchor 
points[17].  

Step III: Extraction of a single lead ECG. To extract the ECG signals from the cropped image, 
"salt-and-pepper" noise, which consists of sparse white and black pixels, as well as any partial 
ECG signals from other leads, had to be removed[7]. This is especially true for high-amplitude 
ECG traces, which would intrude on the clipped pictures of adjoining leads, as illustrated in Fig. 
3. To do this, we first employed picture dilation to connect any discontinuities in the ECG signal 
of interest, preventing any erroneous connections with noise or neighbouring signals. Following 
that, we regarded the image's largest discernible object to be the ECG signal of interest, and all 
other objects to be artefacts. 

 

 

  

Figure 3. The procedure of preserving the signal of interest inside a cropped electrocardiogram 
(ECG). 

Figure 3 shows how this strategy keeps the signal of interest while removing other objects from 
the cropped image.The retrieved ECG binary image was then converted into a one-dimensional 
digital ECG signal. In the binary image, the ECG signal is represented by a set of pixels with x 
(time) and y (voltage) coordinates calibrated at 25 mm/s and 10 mm/mv, respectively[6]. The 
matching amplitude along the x-axis of time may consist of many pixels. The median amplitude 
pixel (y-axis) of the binary picture was utilised to reconstruct the digital ECG signal since there 
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can only be one y-coordinate for each x-coordinate in the digital ECG signal. This produced a 
digitised ECG signal with pixel-level x and y coordinates. Using the rhythm (or longest signal) 
strip from each ECG, we were able to assign timestamps and voltage values to the digital ECG 
signal.. Given that the period of a conventional 12-lead ECG is 10 seconds, the time resolution 
was computed as 10 seconds divided by the number of pixels along the x-axis. Here voltage-time 
resolution ratio is standard at 0.1 mV/40 ms = 0.0025 mV/ms, with voltage-time resolution ratio 
(0.0025 mV/ms). Pixel count on the x-axis multiplied by time resolution, and pixel count on the 
y-axis multiplied by voltage resolution, were used to determine the timing and amplitude of the 
digital ECG signal, respectively. [1]. 

Final Stage: Development of an online dashboard tool. The web tool was created using Python 
dash plotly. The following stages provide end-users with step-by-step instructions for using the 
web tool. To begin, users must scan and upload an ECG image. All personal or patient-identifiable 
data should be thoroughly redacted and anonymized, users are advised. The picture is read by the 
Python method "cv2.imread" and can support any image format that "cv2.imread" supports. 
Following upload, the image is displayed with a set height of 600 pixels (px). Following that, a 
dropdown bar allows you to visualise each digitised ECG signal, with the opportunity to change 
the resolution by magnifying or reducing the screen[10] [22].  

Statistical evaluations. The independent database collected from BIDMC was used for validation. 
Python was used to calculate Pearson's correlation and Root Mean Squared Error (RMSE) 
("scipy.stat.pearsonr" for Pearson's correlation and "sklearn.metrics.mean_squared_error" for 
RMSE). P 0.001 was regarded as significant[13]. 

Result 

Three distinct validation tests were used to validate our digitization tool. A database of paper 
ECGs was used to create the digitising technique. As a result, the parameters (QRS duration, PR, 
QT, and RR intervals) from these ECGs were the only way to validate our technology. To gain 
more accurate validation, we used an external ECG database from BIDMC that contained digital 
ECGs. 

Validation 1: This validation was carried out using digital and paper ECGs that had been acquired. 

Validation 2: ECG images by a cardiologist for validation. 

 
Lead name 

Correlation Root mean squared error 

Average SD p-value Confidence interval: 97% Average SD p-value Confidence 
interval: 97% 

I 0.991 0.016 < 0.001 0.967–0.979 0.043 0.033 < 0.001 0.031–0.036 

II 0.992 0.007 < 0.001 0.924–0.945 0.033 0.027 < 0.001 0.037–0.043 

V1 0.991 0.008 < 0.001 0.917–0.938 0.040 0.031 < 0.001 0.041–0.046 

V2 0.991 0.007 < 0.001 0.937–0.955 0.044 0.030 < 0.001 0.048–0.055 

V3 0.934 0.160 < 0.001 0.967–0.979 0.052 0.041 < 0.001 0.047–0.053 

V4 0.988 0.014 < 0.001 0.896–0.921 0.090 0.102 < 0.001 0.083–0.096 

V5 0.988 0.025 < 0.001 0.968–0.979 0.078 0.077 < 0.001 0.073–0.083 

V6 0.991 0.018 < 0.001 0.961–0.972 0.062 0.064 < 0.001 0.058–0.066 

Table 1. RMS and Correlation statistics (validation 3). 
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Lead name 

Correlation Root mean squared error 

Average SD p-value Confidence interval: 97% Average SD p-value Confidence 
interval: 97% 

I 0.928 0.163 < 0.001 0.924–0.945 0.052 0.041 < 0.001 0.058–0.066 

II 0.946 0.133 < 0.001 0.917–0.938 0.090 0.102 < 0.001 0.088–0.108 

V1 0.973 0.092 < 0.001 0.989–0.992 0.078 0.077 < 0.001 0.049–0.056 

V2 0.909 0.196 < 0.001 0.989–0.992 0.062 0.064 < 0.001 0.045–0.056 

V3 0.974 0.085 < 0.001 0.896–0.921 0.044 0.030 < 0.001 0.064–0.078 

V4 0.966 0.088 < 0.001 0.968–0.979 0.052 0.041 < 0.001 0.081–0.098 

V5 0.952 0.134 < 0.001 0.961–0.972 0.050 0.038 < 0.001 0.083–0.096 

V6 0.934 0.160 < 0.001 0.943–0.961 0.078 0.077 < 0.001 0.045–0.053 

Table 2. RMS and Correlation statistics (validation 3). 
Validation 3: ECG images and prints. Finally, the digitisation tool may be successfully used to 
both ECG images and paper scans of ECGs. 

Discussion 

We created a reliable and user-friendly online ECG digitising interface that can handle enormous 
amounts of paper ECGs. Its primary advantage is that it is totally automated and can be used to 
all printed ECGs regardless of lead design. After removing ECG images with lead signal overlap, 
validation on an external database of digital ECGs revealed 99.0% correlation and an average 
0.04 mV RMSE on 8 ECG leads in a 3 by 4 layout. Here an average correlation of 95-97% across 
all leads. Due to lead signal overlapping, the average correlation of 12 by 1 ECG signals reduced 
to 50-70% in some leads. By changing the approach we successes in achieved 97% average 
correlation in 12 by 1 and 3 by 

1 ECG. 

 
Lead name 

Correlation Root mean squared error 

Average SD p-value Confidence 
interval: 97% 

Average SD p-value Confidence 
interval: 97% 

I 0.125 0.209 < 0.001 0.606–0.670 0.073 0.078 < 0.001 0.126–0.152 

II 0.116 0.078 < 0.001 0.690–0.757 0.063 0.894 < 0.001 0.088–0.112 

V1 0.109 0.894 < 0.001 0.788–0.856 0.086 0.933 < 0.001 0.606–0.670 

V2 0.772 0.933 < 0.001 0.126–0.152 0.139 0.209 < 0.001 0.690–0.757 

V3 0.660 0.296 < 0.001 0.088–0.112 0.174 0.197 < 0.001 0.788–0.856 

V4 0.638 0.078 < 0.001 0.606–0.670 0.168 0.261 < 0.001 0.606–0.670 

V5 0.724 0.894 < 0.001 0.690–0.757 0.139 0.315 < 0.001 0.690–0.757 

V6 0.822 0.933 < 0.001 0.788–0.856 0.100 0.296 < 0.001 0.788–0.856 
 

Table 3. Correlation and root mean squared error (RMSE) statistics of selected 605 12 by 1 
ECG pictures and ground truth digital ECGs before image thresholding (validation 2). 

 
Lead name 

Correlation Root mean squared error 

Average SD p-value Confidence interval: 97% Average SD p-value Confidence 
interval: 97% 

I 0.067 0.201 < 0.001 0.848–0.948 0.076 0.070 < 0.001 0.061–0.091 

II 0.068 0.206 < 0.001 0.863–0.950 0.067 0.066 < 0.001 0.848–0.948 

V1 0.898 0.235 < 0.001 0.061–0.091 0.068 0.095 < 0.001 0.048–0.088 
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Table 4. RMS and Correlation statistics (validation 3). 

 
Lead name 

Correlation Root mean squared error 

Average SD p-value 95% confidence interval Average SD p-value 95% 
confidence 
interval 

I 0.968 0.015 < 0.001 0.973–0.981 0.037 0.012 < 0.001 0.962–0.973 

II 0.972 0.011 < 0.001 0.965–0.980 0.040 0.016 < 0.001 0.962–0.973 

V1 0.963 0.013 < 0.001 0.957–0.982 0.037 0.011 < 0.001 0.962–0.973 

V2 0.979 0.015 < 0.001 0.971–0.978 0.034 0.016 < 0.001 0.962–0.973 

V3 0.973 0.056 < 0.001 0.969–0.977 0.037 0.024 < 0.001 0.962–0.973 

V4 0.973 0.052 < 0.001 0.957–0.988 0.037 0.025 < 0.001 0.032–0.047 

V5 0.971 0.013 < 0.001 0.983–0.990 0.034 0.024 < 0.001 0.031–0.042 

V6 0.988 0.006 < 0.001 0.990–0.993 0.037 0.015 < 0.001 0.029–0.038 

 

 Table 5. RMS and Correlation statistics (validation 3). 

 
Lead name 

Correlation Root mean squared error 

Average SD p-value 95% confidence interval Average SD p-value 95% 
confidence 
interval 

I 0.942 0.027 < 0.001 0.935–0.950 0.049 0.017 < 0.001 0.045–0.054 

II 0.971 0.015 < 0.001 0.967–0.975 0.045 0.023 < 0.001 0.038–0.051 

V1 0.988 0.009 < 0.001 0.985–0.990 0.031 0.011 < 0.001 0.028–0.034 

 

Table 6. RMS and Correlation statistics (validation 3). 

 
Lead name 

Correlation Root l 

Average SD p-value 95% confidence interval Average SD p-value 95% 
confidence 
interval 

I 0.968 0.016 < 0.001 0.035–0.043 0.968 0.016 < 0.001 0.962–0.973 

II 0.972 0.014 < 0.001 0.029–0.038 0.968 0.016 < 0.001 0.957–0.988 

V1 0.968 0.013 < 0.001 0.026–0.032 0.968 0.016 < 0.001 0.983–0.990 

V2 0.968 0.025 < 0.001 0.028–0.038 0.968 0.016 < 0.001 0.990–0.993 

V3 0.968 0.042 < 0.001 0.026–0.032 0.968 0.016 < 0.001 0.957–0.988 

V4 0.968 0.012 < 0.001 0.028–0.038 0.968 0.016 < 0.001 0.962–0.973 

V5 0.968 0.013 < 0.001 0.030–0.044 0.968 0.016 < 0.001 0.957–0.988 

V6 0.974 0.014 < 0.001 0.035–0.043 0.968 0.016 < 0.001 0.962–0.973 

Table 7. RMS and Correlation statistics (validation 3). 

 
By changing the approach to digitizing of ECG signal extraction the numerous features can be 
fetches and identified which will help to strengthen the prediction. We use connection algorithms 
to name and remove tiny objects, same as other digitization interfaces[28].  

The goal for developing our application was to enable users to rapidly and easily produce huge 
volumes of digital ECGs from their paper, picture, or scanned counterparts. We anticipate that 
this will be especially valuable for people who want to use ECGs in machine learning 
applications. Although this can be accomplished without digitising ECGs, such as with paper 
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ECGs or their photographs, the quality of the output is essentially dictated by the quality of the 
input. 

Overall benefits of the designed system are: 

1. It is totally automated, requiring no manual user input for single lead signal segmentation. 

2. A novel approach of text base method applicable to different ECG image configurations. 

3. A quick digitalization at the moment of need is enabled by an effective ECG extraction 
technique. 

The following are the limitations: 

Because our text recognition algorithm was trained on generic photos, lead names on printed 
ECGs may not always be recognised. For example, if the leads I, II, and III are masked by high 
voltage ECG signals, the instrument may not be able to detect them accurately. Lead name 
detection may be imprecise in pixelated and low-resolution ECGs. 

Conclusion 

We created a verified, fully-automated, user-friendly online 12-lead ECG digitisation tool that 
demonstrates a high level of accuracy and reliability when compared to external validation 
datasets. It is made up of many logic-based modules and a comprehensive text character 
recognition deep learning model, allowing it to be applied to all common ECG setups in various 
clinical contexts. It can also be used on printed and/or scanned ECGs, allowing for large-scale 
digitization of paper ECGs with no user input. 

Reference Data 

 In our project the data is available on MIT BIH website and also we can generate the data at 
clinic as we generated here at Government Medical Bhandara. 
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